I may first observe, that the reefs within the lagoons of atolls and within lagoon-channels, would, if favourably circumstanced, grow upwards during subsidence in the same manner as the annular rim; and, therefore, we might expect that such lagoon-reefs, when not surrounded and buried by an accumulation of sediment more rapid than the rate of subsidence, would rise abruptly from a greater depth than that at which the efficient polypifers can flourish: we see this well exemplified in the small abruptly-sided reefs, with which the deep lagoons of the Chagos and Southern Maldiva atolls are studded. With respect to the ring or basin-formed reefs of the Northern Maldiva atolls, it is evident, from the perfectly continuous series which exists that the marginal rings, although wider than the exterior or bounding reef of ordinary atolls, are only modified portions of such a reef; it is also evident that the central rings, although wider than the knolls or reefs which commonly occur in lagoons, occupy their place. The ring-like structure has been shown to be contingent on the breaches into the lagoon being broad and numerous, so that all the reefs which are bathed by the waters of the lagoon are placed under nearly the same conditions with the outer coast of an atoll standing in the open sea. Hence the exterior and living margins of these reefs must have been favourably circumstanced for growing outwards, and increasing beyond the usual breadth; and they must likewise have been favourably circumstanced for growing vigorously upwards, during the subsiding movements, to which by our theory the whole archipelago has been subjected; and subsidence with this upward growth of the margins would convert the central space of each little reef into a small lagoon. This, however, could only take place with those reefs, which had increased to a breadth sufficient to prevent their central spaces from being almost immediately filled up with the sand and detritus driven inwards from all sides: hence it is that few reefs, which are less than half a mile in diameter, even in the atolls where the basin-like structure is most strikingly exhibited, include lagoons. This remark, I may add, applies to all coral-reefs wherever found. The basin-formed reefs of the Maldiva Archipelago may, in fact, be briefly described, as small atolls formed during subsidence over the separate portions of large and broken atolls, in the same manner as these latter were formed over the barrier-reefs, which encircled the islands of a large archipelago now wholly submerged.
In the second section of the first chapter, I have shown that there are in the neighbourhood of atolls, some deeply submerged banks, with level surfaces; that there are others, less deeply but yet wholly submerged, having all the characters of perfect atolls, but consisting merely of dead coral-rock; that there are barrier-reefs and atolls with merely a portion of their reef, generally on the leeward side, submerged; and that such portions either retain their perfect outline, or they appear to be quite effaced, their former place being marked only by a bank, conforming in outline with that part of the reef which remains perfect. These several cases are, I believe, intimately related together, and can be explained by the same means. There, perhaps, exist some submerged reefs, covered with living coral and growing upwards, but to these I do not here refer.
As we see that in those parts of the ocean, where coral-reefs are most abundant, one island is fringed and another neighbouring one is not fringed; as we see in the same archipelago, that all the reefs are more perfect in one part of it than in another, for instance, in the southern half compared with the northern half of the Maldiva Archipelago, and likewise on the outer coasts compared with the inner coasts of the atolls in this same group, which are placed in a double row; as we know that the existence of the innumerable polypifers forming a reef, depends on their sustenance, and that they are preyed on by other organic beings; and, lastly, as we know that some inorganic causes are highly injurious to the growth of coral, it cannot be expected that during the round of change to which earth, air, and water are exposed, the reef-building polypifers should keep alive for perpetuity in any one place; and still less can this be expected, during the progressive subsidences, perhaps at some periods more rapid than at others, to which by our theory these reefs and islands have been subjected and are liable. It is, then, not improbable that the corals should sometimes perish either on the whole or on part of a reef; if on part, the dead portion, after a small amount of subsidence, would still retain its proper outline and position beneath the water. After a more prolonged subsidence, it would probably form, owing to the accumulation of sediment, only the margin of a flat bank, marking the limits of the former lagoon. Such dead portions of reef would generally lie on the leeward side (Mr. Lyell, in the first edition of his "Principles of Geology," offered a somewhat different explanation of this structure. He supposes that there has been subsidence; but he was not aware that the submerged portions of reef were in most cases, if not in all, dead; and he attributes the difference in height in the two sides of most atolls, chiefly to the greater accumulation of detritus to windward than to leeward. But as matter is accumulated only on the backward part of the reef, the front part would remain of the same height on both sides. I may here observe that in most cases (for instance, at Peros Banhos, the Gambier group and the Great Chagos Bank), and I suspect in all cases, the dead and submerged portions do not blend or slope into the living and perfect parts, but are separated from them by an abrupt line. In some instances small patches of living reef rise to the surface from the middle of the submerged and dead parts.), for the impure water and fine sediment would more easily flow out from the lagoon over this side of the reef, where the force of the breakers is less than to windward; and therefore the corals would be less vigorous on this side, and be less able to resist any destroying agent. It is likewise owing to this same cause, that reefs are more frequently breached to leeward by narrow channels, serving as by ship-channels, than to windward. If the corals perished entirely, or on the greater part of the circumference of an atoll, an atoll-shaped bank of dead rock, more or less entirely submerged, would be produced; and further subsidence, together with the accumulation of sediment, would often obliterate its atoll-like structure, and leave only a bank with a level surface.
In the Chagos group of atolls, within an area of 160 miles by 60, there are two atoll-formed banks of dead rock (besides another very imperfect one), entirely submerged; a third, with merely two or three very small pieces of living reef rising to the surface; and a fourth, namely, Peros Banhos (Plate I., Figure 9), with a portion nine miles in length dead and submerged. As by our theory this area has subsided, and as there is nothing improbable in the death, either from changes in the state of the surrounding sea or from the subsidence being great or sudden, of the corals on the whole, or on portions of some of the atolls, the case of the Chagos group presents no difficulty. So far indeed are any of the above-mentioned cases of submerged reefs from being inexplicable, that their occurrence might have been anticipated on our theory, and as fresh atolls are supposed to be in progressive formation by the subsidence of encircling barrier-reefs, a weighty objection, namely that the number of atolls must be increasing infinitely, might even have been raised, if proofs of the occasional destruction and loss of atolls could not have been adduced.
THE DISSEVERMENT OF THE LARGER MALDIVA ATOLLS.
The apparent progressive disseverment in the Maldiva Archipelago of large atolls into smaller ones, is, in many respects, an important consideration, and requires an explanation. The graduated series which marks, as I believe, this process, can be observed only in the northern half of the group, where the atolls have exceedingly imperfect margins, consisting of detached basin-formed reefs. The currents of the sea flow across these atolls, as I am informed by Captain Moresby, with considerable force, and drift the sediment from side to side during the monsoons, transporting much of it seaward; yet the currents sweep with greater force round their flanks. It is historically known that these atolls have long existed in their present state; and we can believe, that even during a very slow subsidence they might thus remain, the central expanse being kept at nearly its original depth by the accumulation of sediment. But in the action of such nicely balanced forces during a progressive subsidence (like that, to which by our theory this archipelago has been subjected), it would be strange if the currents of the sea should never make a direct passage across some one of the atolls, through the many wide breaches in their margins. If this were once effected, a deep-water channel would soon be formed by the removal of the finer sediment, and the check to its further accumulation; and the sides of the channel would be worn into a slope like that on the outer coasts, which are exposed to the same force of the currents. In fact, a channel precisely like that bifurcating one which divides Mahlos Mahdoo (Plate II., Figure 4.), would almost necessarily be formed. The scattered reefs situated near the borders of the new ocean-channel, from being favourably placed for the growth of coral, would, by their extension, tend to produce fresh margins to the dissevered portions; such a tendency is very evident (as may be seen in the large published chart) in the elongated reefs on the borders of the two channels intersecting Mahlos Mahdoo. Such channels would become deeper with continued subsidence, and probably from the reefs not growing up perpendicularly, somewhat broader. In this case, and more especially if the channels had been formed originally of considerable breadth, the dissevered portions would become perfect and distinct atolls, like Ari and Ross atolls (Plate II., Figure 6), or like the two Nillandoo atolls, which must be considered as distinct, although related in form and position, and separated from each other by channels, which though deep have been sounded. Further subsidence would render such channels unfathomable, and the dissevered portions would then resemble Phaleedoo and Moluque atolls, or Mahlos Mahdoo and Horsburgh atolls (Plate II., Figure 4), which are related to each other in no respect except in proximity and position. Hence, on the theory of subsidence, the disseverment of large atolls, which have imperfect margins (for otherwise their disseverment would be scarcely possible), and which are exposed to strong currents, is far from being an improbable event; and the several stages, from close relation to entire isolation in the atolls of the Maldiva Archipelago, are readily explicable.
We might go even further, and assert as not improbable, that the first formation of the Maldiva Archipelago was due to a barrier-reef, of nearly the same dimensions with that of New Caledonia (Plate II., Figure 5), for if, in imagination, we complete the subsidence of that great island, we might anticipate from the present broken condition of the northern portion of the reef, and from the almost entire absence of reefs on the eastern coast, that the barrier-reef after repeated subsidences, would become during its upward growth separated into distinct portions; and these portions would tend to assume an atoll-like structure, from the coral growing with vigour round their entire circumferences, when freely exposed to an open sea. As we have some large islands partly submerged with barrier-reefs marking their former limits, such as New Caledonia, so our theory makes it probable that there should be other large islands wholly submerged; and these, we may now infer, would be surmounted, not by one enormous atoll, but by several large elongated ones, like the atolls in the Maldiva group; and these again, during long periods of subsidence, would sometimes become dissevered into smaller atolls. I may add, that both in the Marshall and Caroline Archipelagoes, there are atolls standing close together, which have an evident relationship in form: we may suppose, in such cases, either that two or more encircled islands originally stood close together, and afforded bases for two or more atolls, or that one atoll has been dissevered. From the position, as well as form, of three atolls in the Caroline Archipelago (the Namourrek and Elato group), which are placed in an irregular circle, I am strongly tempted to believe that they have originated by the process of disseverment. (The same remark is, perhaps, applicable to the islands of Ollap, Fanadik, and Tamatam in the Caroline Archipelago, of which charts are given in the atlas of Duperrey's voyage: a line drawn through the linear reefs and lagoons of these three islands forms a semicircle. Consult also, the atlas of Lutke's voyage; and for the Marshall group that of Kotzebue; for the Gilbert group consult the atlas of Duperrey's voyage. Most of the points here referred to may, however, be seen in Krusenstern's general Atlas of the Pacific.)
In the Marshall group, Musquillo atoll consists of two loops united in one point; and Menchikoff atoll is formed of three loops, two of which (as may be seen in Figure 3, Plate II.) are connected by a mere ribbon-shaped reef, and the three together are sixty miles in length. In the Gilbert group some of the atolls have narrow strips of reef, like spurs, projecting from them. There occur also in parts of the open sea, a few linear and straight reefs, standing by themselves; and likewise some few reefs in the form of crescents, with their extremities more or less curled inwards. Now, the upward growth of a barrier-reef which fronted only one side of an island, or one side of an elongated island with its extremities (of which cases exist), would produce after the complete subsidence of the land, mere strips or crescent or hook-formed reefs: if the island thus partially fronted became divided during subsidence into two or more islands, these islands would be united together by linear reefs; and from the further growth of the coral along their shores together with subsidence, reefs of various forms might ultimately be produced, either atolls united together by linear reefs, or atolls with spurs projecting from them. Some, however, of the more simple forms above specified, might, as we have seen, be equally well produced by the coral perishing during subsidence on part of the circumference of an atoll, whilst on the other parts it continued to grow up till it reached the surface.
(Editor:{typename type="name"/})
and the girl's mind was in such a turmoil that she had
Check the bank card number ➢Check the bank card number Account owner
Obviously, the tide was rising; and, after seeking vainly
Sister Green Tea Talking Transcript↹What Green Tea Said to Sister
Contraceptive miscarriage➣Contraceptive pills are more harmful or miscarriage is more harmful
without actually submerging his head, and to regain the
Shenkangjia a stock➺Shenkangjia a stock latest news
to have a good idea of time, was employed to strike the
Room Furnishing➬Room Furnishing Feng Shui Taboo